
©2018 Josh Johnson. All Rights Reserved.

State And Events In
CircuitPython

Josh Johnson @ TriPython
11/29/2018

©2018 Josh Johnson. All Rights Reserved.

Follow Along With Code Samples!

h7ps://jjmojojjmojo.github.io/circuit
python_code_samples/

h7ps://github.com/jjmojojjmojo/circ
uitpython_code_samples

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://github.com/jjmojojjmojo/circuitpython_code_samples

©2018 Josh Johnson. All Rights Reserved.

More Background, Ongoing Blog Post

h7ps://jjmojojjmojo.github.io/circuit
python-state-part-1.html

https://jjmojojjmojo.github.io/circuitpython-state-part-1.html

©2018 Josh Johnson. All Rights Reserved.

Who Am I?

• Josh Johnson aka jjmojojjmojo
• Programmer since 1999
• Pythonista since… forever.
• hAp://jjmojojjmojo.github.io
• @jjmojojjmojo
• jjmojojjmojo@gmail.com
• Not an electrical engineer!

http://jjmojojjmojo.github.io/
mailto:jjmojojjmojo@gmail.com

©2018 Josh Johnson. All Rights Reserved.

What Is This Talk?

• This talk is based on an (ongoing) blog series.
• We’ll be digging into some electronics principals as they relate to

microcontrollers, and we’ll be using Python.
• It will summarize and skim, but cover the major topics.

https://jjmojojjmojo.github.io/circuitpython-state-part-1.html

©2018 Josh Johnson. All Rights Reserved.

Who Is This Talk For?

This talk is designed for people who:

• Understand basic Python syntax.

• Have used microcontroller development boards, in a casual way

-- OR –

• Pick up syntax contextually.

• Know nothing about microcontrollers and want an easy way to get into the
scene.

©2018 Josh Johnson. All Rights Reserved.

Topics Covered

In this talk we’ll dive into:
• State – tracking it and ways to reason about it.
• Events – how to detect them and act.
• Applying state and events to projects.
• Basic Object-Oriented Programming (OOP) concepts:

• Classes
• Polymorphism
• AbstracNon

• Advanced OOP:
• Dependency InjecNon
• Proxy PaQern

©2018 Josh Johnson. All Rights Reserved.

Rough Topic Overview

1. The Pla:orm. !
2. Setup/ConstrucBon !
3. Programming Philosophies:

a) State
b) Event DetecBon
c) Polymorphism
d) Dependency InjecBon

4. Example ApplicaBons – UNFINISHED! !

©2018 Josh Johnson. All Rights Reserved.

The Pla(orm

©2018 Josh Johnson. All Rights Reserved.

What Is CircuitPython?

• A fork of MicroPython, for the ATSAMD21 and ATSAMD51 ARM-
based processors.
• Created and driven by Adafruit.
• It’s a full-featured, but stripped down Python implementaHon
• It’s aimed at beginners.

©2018 Josh Johnson. All Rights Reserved.

What Is The M0 And M4 Pla2orm?

• Adafruit has created a suite of development boards based on the
ATSAMD21 and ATSAMD51 processors (respec?vely).
• The boards come in many shapes and sizes.
• Common features:

• Arduino IDE compa?ble.
• Run at 3.3volts.
• Onboard red LED on pin 13
• Onboard RGB LED
• Green power LED
• Reset switch
• USB – used for console access, power, and programming.
• Any pin can be analog or digital
• Most boards support capaci?ve touch (up to 7 pins depending on the board)

©2018 Josh Johnson. All Rights Reserved.

M0 vs M4

• M0 = ATSAMD21
• 48 MHz 32-bit ARM Cortex-M0+
• 256KB Flash (primary storage for python scripts)
• 32 KB RAM

• M4 = ATSAMD51
• 120 MHz 32-bit ARM Cortex M4
• 512 KB Flash
• 192 KB RAM
• No capaciGve touch.

©2018 Josh Johnson. All Rights Reserved.

Express Vs ”Regular”

• Express models include 2MB of extra SPI-based flash memory.

• The memory “just works”.
• RecommendaNon: start with an express board!

©2018 Josh Johnson. All Rights Reserved.

The Pla(orm: What’s Great

• Affordable, well-supported development boards.
• Lots of great opBons.
• Tons of built-in peripherals, powerful microcontrollers.
• Lots of great documentaBon.
• No dedicated computer or installed soFware needed.
• Mu is there to help make the process even easier.
• You can progress from CircuitPython to the Arduino IDE as you get

more sophisBcated.
• Under constant development.

https://www.adafruit.com/category/957
https://codewith.mu/

©2018 Josh Johnson. All Rights Reserved.

The Pla(orm: What’s Not So Great

• There are some minor differences between CircuitPython and
MicroPython.
• Missing some microcontroller features.
• DocumentaEon beyond the basics is fragmented or non-existent.
• Support for things Adafruit doesn’t sell is spoKy.
• It’s hard to see how things work behind the libraries.
• Python is slow.

https://circuitpython.readthedocs.io/en/latest/README.html

©2018 Josh Johnson. All Rights Reserved.

My Boards

©2018 Josh Johnson. All Rights Reserved.

Family Portrait

©2018 Josh Johnson. All Rights Reserved.

The
CircuitPlayground
M0 Express

©2018 Josh Johnson. All Rights Reserved.

ItsyBitsy M0
Express

©2018 Josh Johnson. All Rights Reserved.

Trinket
M0

©2018 Josh Johnson. All Rights Reserved.

GEMMA M0

©2018 Josh Johnson. All Rights Reserved.

Ge#ng Set Up

©2018 Josh Johnson. All Rights Reserved.

Materials List

©2018 Josh Johnson. All Rights Reserved.

Basics

• A M0 or M4 board. I Recommend star>ng with the CircuitPlayground
Express or the Metro M0 Express.
• A micro-usb cable for charging, power, and programming.
• Access to a computer with a free USB port.
• Mu

©2018 Josh Johnson. All Rights Reserved.

Op#onal, but a good idea

• If the headers are not a:ached, you will need a soldering iron, solder,
and @p @nner. A solder wick is not a bad idea as well.
• Wire cu:ers for trimming component leads and cuFng your own

jumper cables.
• A wire stripper, if you are using spools of hookup wire.
• Tweezers for pulling things out of breadboards.
• Small plyers for bending wire and component leads.
• A digital mul@meter.

Picture of my basic tools

©2018 Josh Johnson. All Rights Reserved.

Breadboards

• Any kind will do.
• Larger ones are be=er for more complex projects.
• Most breadboards are modular!

Picture of a few full-sized breadboards connected into giant
breadboard here

©2018 Josh Johnson. All Rights Reserved.

Connectors

• 22 Gauge solid core hook-up wire
• Alligator clips
• Jumper wires (male to male)
• Alligator-to-jumper wires

Picture of hook up wires here

Picture of jumper wires here

Picture of alligator to jumper wire here

Picture of drawer where I keep lengths of wire.

©2018 Josh Johnson. All Rights Reserved.

Bu#ons

• Any kind of momentary switch will work.
• Try to find breadboard-friendly.

Picture of some momentary switches.

©2018 Josh Johnson. All Rights Reserved.

Thermistor

• 10� Precision Epoxy Thermistor - 3950 NTC
• (1) 10� resistor

Picture of thermistor and resistor.

©2018 Josh Johnson. All Rights Reserved.

Photocell

• CdS photoresistor
• (1) 10� resistor

Picture of my photocell and the 10k resistor.

©2018 Josh Johnson. All Rights Reserved.

Dev Board Prepara,on

©2018 Josh Johnson. All Rights Reserved.

Update To The Latest CircuitPython

Defini9ve Guide

Basic Overview:
1. Download the UF2 file for your board.
2. Double-click the reset buFon – the red LED will pulse.
3. Drag the UF2 onto the *BOOT drive that appears.
4. Wait a few seconds.

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

©2018 Josh Johnson. All Rights Reserved.

Download/Update Libraries

Docs/Offical Overview

Basic Overview
• Remove any old *.mpy files in the lib directory on your

CIRCUITPY drive
• Download the bundle for your version from github.
• Unzip - this will create a local lib directory.
• Find the libraries you need and copy them over to your

CIRCUITPY/lib folder.

https://circuitpython.readthedocs.io/en/latest/docs/drivers.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

©2018 Josh Johnson. All Rights Reserved.

Libraries Used In This Talk

• adafruit_dotstar
• neopixel
• adafruit_thermistor

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://circuitpython.readthedocs.io/projects/thermistor/en/latest/

©2018 Josh Johnson. All Rights Reserved.

Electronics

©2018 Josh Johnson. All Rights Reserved.

MCU IO Explained!

©2018 Josh Johnson. All Rights Reserved.

MCU I/O Briefly Explained

• Microcontroller Units (MCUs), in broad terms, are collecAons of
discreet, microscopic electronic components that run at a specific
voltage.
• MCUs have a core that loads and runs instrucAons into/from RAM.
• MCUs have components used as inputs and outputs, to interact with

the outside world (I/O, GPIO)
• I/O can be digital or analog.
• The components that make up I/O include transistors, resistors,

analog-to-digital converters (DACs), and digital-to-analog converters
(ADCs).

©2018 Josh Johnson. All Rights Reserved.

Inputs: Digital Vs Analog

• Analog inputs read a variable voltage from [some minimum] to [some
maximum] and use an ADC to convert it into a number within a given
range.
• Digital inputs read a fixed voltage. If it’s [below some minimum], the

input reads as “LOW”, and if it’s [above some minimum] the input
reads “HIGH”

©2018 Josh Johnson. All Rights Reserved.

Outputs: Digital vs Analog

• Digital outputs are like bu=ons in a way – you turn them ”on” to
provide power, and turn them “off” to disconnect.
• Analog outputs create a variable voltage through a digital-to-analog

converter (DAC).

©2018 Josh Johnson. All Rights Reserved.

Digital Inputs: Bu/ons

©2018 Josh Johnson. All Rights Reserved.

Bu#on Basics

• A bu9on (switch) is a component that something (usually a person)
interacts with to complete a circuit.
• Momentary switches complete the circuit while the bu9on is pressed,

and break it when it is not.
• Other switches (slide, toggle, etc). Complete the circuit when put into

the “on” posiHon, and it stays complete unHl the switch is put into the
“off” posiHon.

©2018 Josh Johnson. All Rights Reserved.

Bu#on Wiring

• Bu9ons can be wired to provide power (bu9on is connected to a

posi@ve voltage), or to drain power (bu9on is connected to ground).

• The easiest (and arguably safest) way to wire bu9ons to a MCU is in

the “draining” style.

• The difference is that when wired this way, the bu9on will read

“LOW” when its actuated, which can be counter-intui@ve, since this

maps to False in Python.

©2018 Josh Johnson. All Rights Reserved.

Pull-up/Pull-down

• Inputs, by default ”float” – their voltage is looking for somewhere to
go, so the readings will be all over the place.
• We encourage the voltage to go where we want (ground, main

power) using a resistor.
• The resistors are referred to as pull-down and pull-up depending on

how the input is wired.
• You can add your own resistors, however most MCUs provide built-in

resistors for each input you can actuate in soOware.

©2018 Josh Johnson. All Rights Reserved.

In Our Demo Circuits: Bu2ons

• The bu:ons are all wired to ground, and use the built-in pull-up
resistors.
• The built-in bu:ons on the CircuitPlayground Express are wired

differently to make the inputs more intuiIve for new programmers,
and are configured to use the pull-down resistors.

©2018 Josh Johnson. All Rights Reserved.

Digital Outputs: LEDs

©2018 Josh Johnson. All Rights Reserved.

LED Basics

• LED = Light Emi<ng Diode.

• Diodes only let electricity move in one direc?on.

• LEDs emit photons as electricity moves through them.

• Different wavelengths of light are produced by different chemicals
and elements in the diode (it tends to be a fairly narrow band).

• Pure white light is produced in two ways:
• Combining Red, Green and Blue LED light.

• Coa?ng ultra-violet LEDs in phosphorescent chemicals.

©2018 Josh Johnson. All Rights Reserved.

‘Simple’ LEDs

• To prevent the LED from taking all the power it can and burning out,
all simple LEDs have resistors wired to them.
• Simple LEDs are just on or off, so they are connected to digital

outputs.
• To dim a simple LED, a technique known as pulse-width-modulaKon

(PWM) is used.

Picture of some simple LEDs.

©2018 Josh Johnson. All Rights Reserved.

RGB LEDs

• RGB stands for Red, Green, and Blue – there are actually three LEDs in

one package.

• You can create nearly any color of light in the visible spectrum by
changing the brightness of each LED component.

• All on = White light

• The RGB LEDs on our boards are special – they contain a controller
chip so they can be chained and individually controlled through one
or two IO pins. They also handle PWM internally so we don’t have to.

Pictures of some RGB LEDs.

©2018 Josh Johnson. All Rights Reserved.

RGB LEDs: NeoPixels Vs DotStars

• Adafruit sells two primary kinds of “advanced” RGB LEDs, and they
have their own names for each: NeoPixels and DotStars.
• NeoPixels are usually bigger, can be brighter, and come in RGBW

styles that include a “true” white LED along with the red, green, and
blue.

• DotStars connect via generic SPI (two pins), NeoPixels use a single pin
and a proprietary protocol.
• NeoPixels have very specific Sming requirements.

• DotStars can be more easily adopted in projects.

©2018 Josh Johnson. All Rights Reserved.

In Our Demo Circuits: LEDs

• All of our boards have two built-in LEDs that we’ll use in our demos.

• Each has a standard red LED on pin 13.
• Each has at least one RGB LED:
• The pin(s) vary from board to board.
• DotStars on some boards.
• NeoPixels on others.
• The CircuitPlayground Express has 10!

Picture of the Red LED on each board, lit up.

Picture of the NeoPixel or DotStar on each board, lit up.

©2018 Josh Johnson. All Rights Reserved.

Analog Input: Resis1ve Sensors

©2018 Josh Johnson. All Rights Reserved.

Resis%ve Sensors: Basics

• Some metals and chemicals change their electrical resistance when
they interact with other kinds of energy.
• Examples include thermistors (heat), photocells (light), and FSRs

(force-sensiHve resistors).
• You can use the fundamental circuit called a voltage divider to read

the resistance with an analog input.

©2018 Josh Johnson. All Rights Reserved.

Voltage Dividers In Brief

• Voltage dividers use two resistors to reduce a voltage.
• Normally, they are fixed – for example, you can use two 10� resistors

to reduce a 5 volt power source to ~2.5 volts.
• The amount of change depends on the values of the resistors and the

input voltage, but there is a known equaKon to accurately calculate
the expected voltage for two given resistors.
• You connect one resistor to ground, the other to posiKve voltage, and

“tap” into the space between them to get your reduced voltage.

©2018 Josh Johnson. All Rights Reserved.

In Our Demo Circuits: Resis2ve Sensors

• We’ve wired up two common resis>ve sensors: a thermistor and a
photocell. Both are wired along with a 10K ohm resistor.
• The CircuitPlayground Express has similar sensors built in.

Picture of the thermistor and photocell on the CPX.

©2018 Josh Johnson. All Rights Reserved.

The Demo Circuits

©2018 Josh Johnson. All Rights Reserved.

Two Momentary Bu/ons

©2018 Josh Johnson. All Rights Reserved.

Two Bu'ons + Thermistor and Photocell

©2018 Josh Johnson. All Rights Reserved.

I/O In Code

©2018 Josh Johnson. All Rights Reserved.

Digital I/O In Code

• We use the built-in digitalio module.
• Here is the simplest possible code that will test our buAons:
• Test for CircuitPlayground Express.
• Test for other boards.

• Here is the simplest possible code that will test our red LED:
• Test for all boards.

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

RGB LEDs In Code

• We’ll need to download and install the adafruit libraries for whichever
kind of RGB LED we have on our board.
• Dotstar: adafruit_dotstar
• Neopixel: neopixel
• Here’s the minimal example code:
• NeoPixels
• DotStars

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Analog I/O In Code

• We use the built-in analogio module for the photocell
• We download and install the adafruit_thermistor library for the

thermistor.
• Here is the basic code for working with a thermistor and photocell:
• For the CircuitPlayground Express.
• For other boards.

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Side Quest: GEMMA’s Lack Of Inputs

• The GEMMA absolutely !ny, and that’s one of the great things about
it.
• However, because of this, it has a severely limited number of pins

available.
• If you want to use a GEMMA with the combined digital buHons and

the analog sensors, you’ll have to use an old trick that takes
advantage of voltage dividers to ”mulKplex” many digital buHons
onto a single analog input.
• TODO: retake pics with proper wiring of thermistor and photocell.

Picture of the two bu.ons mul3plexed for the GEMMA.

©2018 Josh Johnson. All Rights Reserved.

Mul$plexed Bu+ons: GEMMA

• Example code showing the bu@ons working.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Programming Philosophies

©2018 Josh Johnson. All Rights Reserved.

Abstrac(on

©2018 Josh Johnson. All Rights Reserved.

The Problem

• Each board provides different peripherals and GPIO.
• We want the same code to work on mulFple dev boards.
• I wanted to keep my code samples as concise as possible.

©2018 Josh Johnson. All Rights Reserved.

The Solu)on

Figure out what’s common, and build an applicaAon programming
interface (API) to hide, or abstract the differences.

©2018 Josh Johnson. All Rights Reserved.

What’s Common

• Red LED (always on pin 13)
• RGB LED
• BuDon A
• BuDon B
• Thermistor
• Photocell

©2018 Josh Johnson. All Rights Reserved.

What’s Different

• RGB LED could be a DotStar, could be a NeoPixel. They will required
different helper libraries and could use different pins.

• The pins used for each buLon could be different

• If using the ”mulPplex” input-conservaPon scheme (GEMMA), the buLons
are read as analog signals and compared to an expected change in voltage.

• CPX has buLons wired with pull-up resistors, other boards use pull-down –
so whether a buLon is pressed or not will be different from board to board.

• The thermistor and photocell could be of different types. In fact, the exact
type of both is slightly different on the CPX.

©2018 Josh Johnson. All Rights Reserved.

Abstrac(on Defined

• Abstrac:on is used to provide a common API to dissimilar code.
• You expect the same objects, the same methods, the same func:ons.
• But the implementa:on can vary wildly behind the abstrac:on.

©2018 Josh Johnson. All Rights Reserved.

setup.py

• A simple python module
• Defines our agreed upon API.

©2018 Josh Johnson. All Rights Reserved.

Looking At The Abstrac2on

• setup.py for CircuitPlayground Express
• setup.py for GEMMA M0
• setup.py for ItsyBitsy M0 Express
• setup.py for Trinket M0

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
11:%20setup.py%20for%20the%20Itsy%20Bitsy%20M0%20Express
https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Using The Abstrac0on

• Example code that turns on the red LED when buBon A is pressed,
and lights the RGB LED white when buBon B is pressed.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Basics Of State

©2018 Josh Johnson. All Rights Reserved.

What Is State?

• State is the status of a thing, a collec<on of proper<es.
• State describes what something looks like at a given moment in <me.
• State can transi)on. It changes.
• State can be the proper<es of your en<re project, or just one part of

it.

©2018 Josh Johnson. All Rights Reserved.

The Scoreboard Analogy

©2018 Josh Johnson. All Rights Reserved.

The Scoreboard

• Represents global state.
• Changes over :me.
• Changes when things happen in the game.

©2018 Josh Johnson. All Rights Reserved.

State Can Be Stored As Any Mutable Object

• Simple Variables
• Lists
• Dic@onaries
• Strings
• BiBields
• Any combina@on

©2018 Josh Johnson. All Rights Reserved.

Mutable Vs Immutable

Mutable objects can be changed.

Immutable objects cannot.

©2018 Josh Johnson. All Rights Reserved.

Scoreboard Implemented

• Simple variables
• List
• Dic?onary
• Combina?on

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Another (Be+er) Way: Classes

©2018 Josh Johnson. All Rights Reserved.

Classes

• Classes arrange data into a given structure. They model data.
• Classes are a “Blueprint” for making new objects that contain similar

data.

• Classes are used to create instances – objects that contain a copy of
the data structure.
• Classes can contain methods, or funcIons that operate on instances

or classes.

©2018 Josh Johnson. All Rights Reserved.

Instances Vs Classes

• Classes are blueprints used to make instances and hold separate
class-specific data.
• Instances are copies of the class and hold their own data.

©2018 Josh Johnson. All Rights Reserved.

Class Vs Instance Data

• Class data exists once.
• Instance data exists many many >mes (0 to ∞ >mes).

©2018 Josh Johnson. All Rights Reserved.

Contrived Example

• A simple class, making instances, methods explored, instance data vs
class data.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

The Scoreboard As A Class

• Here, we’ve implemented a (somewhat contrived) model of an
American baseball scoreboard.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

What’s Great About Classes

• Classes encapsulate data in an intui:ve way.

• Classes reduce the amount of code you have to write through the use
of polymorphism (more on that shortly)

• Classes have some really cool features that are hard to code
otherwise, for example, you can make methods that act like
proper:es.
• Classes in Python have so-called “magic methods” so it’s easy to make

them work like built-in types.

©2018 Josh Johnson. All Rights Reserved.

Why not use classes?

• Classes can be more difficult to debug.
• Classes don’t always use less code, someBmes they force you to write

more.
• The biggest cases against them, however, is because this is

CircuitPython and every line of code ma/ers:
• every single line of code has to fit within available RAM.
• we’re limited in terms of storage space for code.

• Classes generally take more lines of code to write and use more RAM
than built-in datatypes.

©2018 Josh Johnson. All Rights Reserved.

Bu#on State

©2018 Josh Johnson. All Rights Reserved.

Momentary Bu-ons And State

• Bu9ons have inherent state – they are ”on” or “off”.

• We can use our state modeling concepts to track bu9on state.
• We can extend the basic state tracking to do cool things like detect

events.
• But most criGcally, state is key to fighGng the dreaded bu#on bounce.

©2018 Josh Johnson. All Rights Reserved.

Bu#on Bounce Explained

• Bu9ons are not perfect.

• People are not perfect.

• MCUs are not perfect either.
• Recall there is a range in play for detecCng whether a bu9on is on or off.

• Electricity wants to flow, so it will flow.

• In a main loop, we’re checking bu9on state millions of Cmes per
second.

• These facts conspire to give us “noisy” signals from bu9ons – this is
called “bounce”.

©2018 Josh Johnson. All Rights Reserved.

De-bouncing: A Sampling Problem

• The issue is, at its heart, an issue of sampling.
• Every loop, we’re sampling the value of the buCon, and taking acFon.
• Electricity moves near the speed of light, our code runs millions of

Fmes per second.
• We are geHng as close to real-Fme status as possible, this is why we

get the noise in our signal.
• To “smooth out” the data, we just need to reduce the sample

frequency.

©2018 Josh Johnson. All Rights Reserved.

How Might We Reduce Sample Frequency?

• We can slow down the bu=on (use an R/C circuit)
• We can slow down the processor.
• We can check less oDen.

©2018 Josh Johnson. All Rights Reserved.

Why Not An R/C Circuit

• R/C circuits use a “network” of resistors and a capacitor to store up a
charge over Bme, and then discharge it all at once.
• It requires more components, so it’s more expensive and (more

importantly for hobbyists) it’s more error-prone.
• It’s out of the scope of this talk (it’s worthy of an enBre talk on its

own, R/C circuits are one of the most versaBle circuits in electronics).
• I’ve never goNen it to work. !

©2018 Josh Johnson. All Rights Reserved.

The Worst Best Way: Slowing Down The MCU

• The easiest way to slow down the processor is to block
• Blocking means tying up the processor so it can’t execute any other

statements.
• In Python, the typical way to do this is with time.sleep()
• We’ve been doing this in our tesHng code.

©2018 Josh Johnson. All Rights Reserved.

Why Not Block?

• When the processor is blocked, nothing can happen – no inputs can
be read, no outputs altered, no variables can be manipulated.
• We become Aed to a single fixed frequency.
• Blocking is perfectly acceptable for simple projects.
• However, as things get more complex, blocking becomes a problem.

©2018 Josh Johnson. All Rights Reserved.

State To The Rescue!

• We can use state to track the passage of >me.
• We start by storing the current >me in a state variable.
• Every loop, we check to see how much >me has passed.
• If enough >me has passed to properly reduce our sample frequency,

we take ac>on.

©2018 Josh Johnson. All Rights Reserved.

Simple State To Reduce Sample Frequency

• Example code

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Using A Class To Do The Same Thing

• Example code

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Three-Pass State Management

©2018 Josh Johnson. All Rights Reserved.

Consider the following example code

• Example of using state to control the color and status of the RGB LED.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Phases Explained

• Default State
The ini=al state when the board boots up

• Check Real Life
Read the physical state of buFons, sensors, etc.

• Reconsider State
Look at the state as a whole, and change the state based on what you see.

• Reconcile State
Interact with the physical world, turn on the LED, take other ac=on.

©2018 Josh Johnson. All Rights Reserved.

Why?

• Keeping state and the physical sensors/LEDs apart is a fundamental

separa&on of concerns.

• Don’t think of each line of code as execuFng in sequence – things are
happening so fast that the lines are effecFvely interleaved.

• Sensors and LED libraries can necessarily block – we want to get out
of the way quickly and let them do their thing.

• This way of looking at things opens the door to some really cool stuff,
in parFcular, event detec&on.

©2018 Josh Johnson. All Rights Reserved.

Event Detec)on

©2018 Josh Johnson. All Rights Reserved.

What is an event?

• An event is a moment in 9me that ma:ers to your applica9on.

• Most of the 9me, events happen when state transi9ons from one
value to another.

• But it can also be arbitrary - for example, when our ‘debounce’ 9me
has elapsed, that is an event.

• Events can also happen because of other events, or because state
changes in a certain way – for example, if you hold a bu:on down for
5 seconds. That’s the debounce event, then “the bu:on was pressed”
event, followed by “five seconds has elapsed”.

©2018 Josh Johnson. All Rights Reserved.

Bu#on Events

©2018 Josh Johnson. All Rights Reserved.

Bu#on Events

• Bu9ons have several possible events as their state changes when
people interact with it.
• Lets start with the two primary ones: press and release
• These primary events can be defined using some simple logic.

©2018 Josh Johnson. All Rights Reserved.

Press Event

• The debounce ;me has elapsed.
• The state of the bu@on was False, and the bu@on is now reading True.

©2018 Josh Johnson. All Rights Reserved.

Release Event

• The debounce ;me has elapsed.
• The state of the bu@on was True, and the bu@on is reading False

©2018 Josh Johnson. All Rights Reserved.

Bu#on Events In Code: Basics

• Example of basic bu@on event detecAon

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Bu#on Events In Code: A Simple Class

• Example of using simple fixed classes to do buAon events

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Flexible Event Detec.on: Polymorphism

• Our previous example was fixed, all of the code is contained within
the two very similar classes.
• The event detecDon and debounce code will be the same regardless

of the use case of our class.
• We can factor the common code into a base class and use inheritance

to re-use that code in new classes.
• We can write new code in the derived, or child classes to handle the

events in different ways.

©2018 Josh Johnson. All Rights Reserved.

A Contrived Example

• Example of how class inheritance works.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Bu#on Event Detec-on: Polymorphic

• Example of a base class for bu@on press and release detecAon, and
classes that use the base class to do special things with the events.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Analog Event Detec.on

• Detec9ng events that happen with our analog sensors is similar to
how we detect events with bu@ons.
• However, we have a wide range of values instead of just True/False.
• Analog sensors are also much more fuzzy than their digital cohorts.
• This is especially true on our chosen plaIorm: the M0/M4 processors

have very sensi9ve ADCs, and produce values ranging from 0-65535.

©2018 Josh Johnson. All Rights Reserved.

Analog Events: Considera2ons

• Because of the fuzziness, we can’t rely on an exact amount.
• We’ll need to use some math, and some special sampling techniques

to get a good reading.
• We’re also going to want to deal with thresholds, as opposed to

absolute values.
• Thrashing, or quickly changing from one state to the next is very

possible and we’ll need to protect against it.

©2018 Josh Johnson. All Rights Reserved.

Reliable Analog Sensor Reading

• Before we can detect events, we’ll need to first do some sampling.
• This is very similar to how we debounced buEons earlier, except that

we’re going to compare values and check periodically.
• The goal is to get a reading that is accurate over a short period of

Hme.

©2018 Josh Johnson. All Rights Reserved.

Example: Photocell Reading

• Example of noisy photocell code.
• Example of sampling the photocell and smoothing the value out.

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Basic Analog Events: Low/Medium/High

• Since our examples are kind of contrived, we need to come up with
some events, that are also kind of contrived.
• Let’s trigger three events:
• ‘low’, when the sensor reads below a certain amount
• ‘high’, when the sensor reads above a certain amount
• ‘medium’, when the sensor is in between “high” and “low”

©2018 Josh Johnson. All Rights Reserved.

Example: Temperature Events

• Example of the temperature sensor triggering the low/high/medium
events.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

A New Event: Change

• Our last example printed to the console every >me the temperature
sensor was read.
• This means the same “medium” event code will run over and over as

long as the temperature sensor is reading a “medium” value.
• There are >mes when we would want the code to run once, when the

temperature transi>ons from one range to the next.
• This means we have a new fourth event: ‘change’.

©2018 Josh Johnson. All Rights Reserved.

Example: Temperature Events And Change

• Example code showing the change event along side the other
temperature range events.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Polymorphism Can Help

• If we were to implement the same code for the photocell, most of it
would look very similar.
• Only the values themselves, and what consCtutes “high”, “medium”

and ”low” would change.
• We can use polymorphism to easily create a base class containing the

common code.
• Then we can create projects using all sorts of similar sensors.
• We can also use the “change” event for unexpected use cases.

©2018 Josh Johnson. All Rights Reserved.

Example: A Generic Analog State Base Class

• Example of implemen=ng code using a base class.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Implementa)on: Color Changing

• Example showing the minimal implementa=ons showed in the last
example being used to change the colors of the RGB LED depending
on the analog range.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

It’s All Great Except The Boilerplate

• The downside of our class-based event dispatchers is that they
require extra classes to be wriCen every Dme you want to add new
funcDonality.
• This is oFen referred to as boilerplate code.
• Boilerplate is fine in simple cases, but as things get more complex, it

can get tedious.
• As menDoned earlier, we also have to be conscious about memory

and storage usage – more classes means more lines of code.

©2018 Josh Johnson. All Rights Reserved.

Avoiding Boilerplate: Instance Configura7on

• The simplest way to avoid this class inheritance stuff is to take
advantage of the constructor’s purpose as the “setup” rouDne for
every new instance of a class.
• Up unDl now, we’ve only used constructors for seHng up our default

values.
• Constructors can accept arguments like any other funcDon or

method.
• We can pass in parameters to the constructor to configure the

instance and avoid having to write more boilerplate.

©2018 Josh Johnson. All Rights Reserved.

The Generic Analog Event Dispatcher Mark 2

• Example of the analog event dispatcher refactored to work with
configuraBon in the constructor, and implementaBons of the RGB LED
color changing code for the thermistor and the photocell.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

Could We Go Further?

• The last example works, but it only has one funcDon: it changes the

color of the LED.

• We have to implement, at a minimum (boilerplate!!) one method:
sample()
• Everything else is configurable in the constructor, except the actual

code that is executed when an event happens.

• It’s possible to take this a step further, and uDlize a neat concept
called dependency injec*on.

©2018 Josh Johnson. All Rights Reserved.

Dependency Injec+on

©2018 Josh Johnson. All Rights Reserved.

A Brief Introduc/on To Dependency Injec/on

• Dependency Injec=on is a pa?ern by which you pass services to
methods or func=ons instead of crea=ng them in the method or
func=on.
• It’s useful because you can rely heavily on abstrac=on: anything that

has the right API will work, and how it’s implemented is of no concern
to the code using it.

©2018 Josh Johnson. All Rights Reserved.

Dependency Injec+on In Python

• In Python, mutable objects are passed by reference.
• Everything in python is an object, and only a few are immutable.
• This means we can pass objects, funcFons, and even instance

methods as parameters.

©2018 Josh Johnson. All Rights Reserved.

Dependency Injec+on In Ac+on

• TODO: Example of a generic buDon dispatcher.
• TODO: Example of passing the state object too
• Example of our configurable generic analog event dispatcher, but fully

and uDerly configurable using dependency injecIon.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

©2018 Josh Johnson. All Rights Reserved.

END!

©2018 Josh Johnson. All Rights Reserved.

Applica'ons

©2018 Josh Johnson. All Rights Reserved.

Nightlight

• This applica;on turns the NeoPixel or DotStar on when the light falls
below a certain threshold.
• It’s configurable using the two buHons:
• BuHon A cycles the RGB LED color
• BuHon B cycles the intensity
• Holding BuHon A toggles the LED(s) on/off.
• Holding BuHon B toggles flashing.

• Example code

©2018 Josh Johnson. All Rights Reserved.

Touchmouse

• Low-impact mouse bu@ons using capaciAve touch technology.
• 4 funcAons:
• LeF click
• Right click
• Scroll up
• Scroll down

• The RGB LED changes color to give a visual indicaAon of what’s
happening.

©2018 Josh Johnson. All Rights Reserved.

Conference Session Timer

• A visual que that tells a speaker how long they have le> in a non-
distracAng way.
• Changes the RGB LED:
• from white to green when the talk begins
• from green to yellow when the talk has 5 minutes le>
• from yellow to red when the talk is supposed to be over.
• flashes white and red when the talk has gone over by 5 minutes.

• The A buOon is used to pause or start the Amer. Hold for reset.
• The B buOon asks for more Ame. If you have surpassed your limit for

extra Ame requests, the LED briefly flashes blue.

