State And Events In
CircuitPython

Josh Johnson @ TriPython
11/29/2018

Follow Along With Code Samples!

https://iimojojijmojo.github.io/circuit

python code samples/

https://github.com/jimojojjmojo/circ
uitpython code samples

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://github.com/jjmojojjmojo/circuitpython_code_samples

More Background, Ongoing Blog Post

https://ijmojojjmojo.github.io/circuit

pvthon-state-part-1.html

https://jjmojojjmojo.github.io/circuitpython-state-part-1.html

Who Am |?

* Josh Johnson aka jjmojojjmojo
* Programmer since 1999
* Pythonista since... forever.

* http://jimojojimojo.github.io
* @jjmojojjmojo

* jimojojjmojo@gmail.com

* Not an electrical engineer!

http://jjmojojjmojo.github.io/
mailto:jjmojojjmojo@gmail.com

What Is This Talk?

e This talk is based on an (ongoing) blog series.

* We'll be digging into some electronics principals as they relate to
microcontrollers, and we’ll be using Python.

* [t will summarize and skim, but cover the major topics.

https://jjmojojjmojo.github.io/circuitpython-state-part-1.html

Who Is This Talk For?

This talk is designed for people who:

* Understand basic Python syntax.
* Have used microcontroller development boards, in a casual way

- OR-

* Pick up syntax contextually.

 Know nothing about microcontrollers and want an easy way to get into the
scene.

Topics Covered

In this talk we’ll dive into:

e State — tracking it and ways to reason about it.
* Events — how to detect them and act.
* Applying state and events to projects.

e Basic Object-Oriented Programming (OOP) concepts:

e Classes
* Polymorphism
e Abstraction

e Advanced OQOP:

* Dependency Injection
* Proxy Pattern

Rough Topic Overview

1. The Platform. x

2. Setup/Construction x

3. Programming Philosophies:

a) State
b) Event Detection

c) Polymorphism
d) Dependency Injection

4. Example Applications — UNFINISHED! &2

The Platform

What Is CircuitPython?

A fork of MicroPython, for the ATSAMD21 and ATSAMD51 ARM-
based processors.

* Created and driven by Adafruit.
* |[t’s a full-featured, but stripped down Python implementation
* [t's aimed at beginners.

What Is The MO And M4 Platform?

e Adafruit has created a suite of development boards based on the
ATSAMD21 and ATSAMD51 processors (respectively).

* The boards come in many shapes and sizes.

e Common features:

* Arduino IDE compatible.
* Run at 3.3volts.

* Onboard red LED on pin 13
* Onboard RGB LED

* Green power LED

* Reset switch
 USB — used for console access, power, and programming.

* Any pin can be analog or digital
* Most boards support capacitive touch (up to 7 pins depending on the board)

MO vs M4

* MO = ATSAMD21

e 48 MHz 32-bit ARM Cortex-MO0+
» 256KB Flash (primary storage for python scripts)

* 32 KB RAM
* M4 = ATSAMDS51
* 120 MHz 32-bit ARM Cortex M4

e 512 KB Flash
e 192 KB RAM
* No capacitive touch.

Express Vs “Regular”

* Express models include 2MB of extra SPI-based flash memory.

* The memory “just works”.
* Recommendation: start with an express board!

The Platform: What’s Great

 Affordable, well-supported development boards.

* Lots of great options.
* Tons of built-in peripherals, powerful microcontrollers.

* Lots of great documentation.

* No dedicated computer or installed software needed.
* Mu is there to help make the process even easier.

* You can progress from CircuitPython to the Arduino IDE as you get
more sophisticated.

* Under constant development.

https://www.adafruit.com/category/957
https://codewith.mu/

The Platform: What’s Not So Great

* There are some minor differences between CircuitPython and

MicroPython.
* Missing some microcontroller features.

* Documentation beyond the basics is fragmented or non-existent.
 Support for things Adafruit doesn’t sell is spotty.

* [t’s hard to see how things work behind the libraries.
* Python is slow.

https://circuitpython.readthedocs.io/en/latest/README.html

My Boards

The

CircuitPlayground
MO Express

O
>
>.
(Vg
=
)
>.
(Vg
=

Express

- H._.:..:....L mv.us \L
ML ePY

|\

Trinket

GEMMA MO

Getting Set Up

Materials List

Basics

* A MO or M4 board. | Recommend starting with the CircuitPlayground
Express or the Metro MO Express.

* A micro-usb cable for charging, power, and programming.

» Access to a computer with a free USB port.
* Mu

Optional, but a good idea

* |f the headers are not attached, you will need a soldering iron, solder,
and tip tinner. A solder wick is not a bad idea as well.

* Wire cutters for trimming component leads and cutting your own
jumper cables.

* A wire stripper, if you are using spools of hookup wire.
* Tweezers for pulling things out of breadboards.

* Small plyers for bending wire and component leads.
A digital multimeter.

Breadboards

* Any kind will do.

* Larger ones are better for more complex projects.
* Most breadboards are modular!

P " '-- et S "\

J-.!!F!FUIIIII III
- *Q-ﬂ-'—nm‘- o areva

: : : _—
I ; r A...k-.- .4v~-q‘- - N
) !

AR R R R EEEEEREEY

-QI.'..I.‘I.I.

Ty e ar— b~ -

T T T T
| AAmss sww

SRR rr sEames
terer smewn

SEEEN ENEEN

— . U —— “ll‘ll."'"'

SNEESE apase snRer wuBan S e ... i FER RN gy W

| S _dBdwes SoREs SENES SEwws 035;‘ . SRENNE wvesw

- -~ . FRwEw e

— ——) WHENEN 'R R R

ik N . EENEN] WWNEEW

'ooalo.o..o--ooo-o.looooc L LLE e
'onoannﬁunolonooonoilt

W R
trvvv.vuvvt
e e

oa-n-.-oooo.......t‘..al.i.lﬁst‘
.

:.I.Og..‘

+ , -
Reans sesre cnnes
| SSSEs sswns sEnew
*_ T —— —

+

A T
| "W EE swses snnes

- = z L >
t0onawlnaomaon‘n‘cwinn.'llllilll.
vcJnnnl00nnnluuvml.llll.l.lil'.ll
"ou‘nnu..anaOualwllllilllllllll.l
°cm,mcmo-otaunam‘i'l'll.lli"lll!
.'OJQQ'O.J'l.tll‘.l‘.'..lll...'..

:

! 1.‘05
....O
- ...
- ...
‘AN
“ s e
...
-
“ s a
Teesene
- .
R
. ..
- . e
B
-
“.aean
-
.- ...
Tesans
LY
L
LI
R
Tenwnsn

BEREE s seeme SRR Er srnrr -
' SOESE seenr Pevms smnas SSnar =»
T —

Connectors

e 22 Gauge solid core hook-up wire
* Alligator clips

 Jumper wires (male to male)

* Alligator-to-jumper wires

Buttons

* Any kind of momentary switch will work.
* Try to find breadboard-friendly.

Thermistor

* 10k Precision Epoxy Thermistor - 3950 NTC
* (1) 10kQ resistor

Photocell

* CdS photoresistor
* (1) 10kQ resistor

Dev Board Preparation

Update To The Latest CircuitPython

Definitive Guide

Basic Overview:

1.

2.
3.
4. \Wait a few seconds.

Download the UF2 file for your board.
Double-click the reset button — the red LED will pulse.

Drag the UF2 onto the *BOOT drive that appears.

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Download/Update Libraries
Docs/Offical Overview

Basic Overview

* Remove any old *.mpy files in the lib directory on your
CIRCUITPY drive

* Download the bundle for your version from github.
* Unzip - this will create a local 1ib directory.

* Find the libraries you need and copy them over to your
CIRCUITPY/Iib folder.

https://circuitpython.readthedocs.io/en/latest/docs/drivers.html
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

Libraries Used In This Talk

e adafruit dotstar

. neogixel

e adafruit thermistor

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://circuitpython.readthedocs.io/projects/thermistor/en/latest/

Electronics

MCU |10 Explained!

MCU /O Briefly Explained

* Microcontroller Units (MCUs), in broad terms, are collections of
discreet, microscopic electronic components that run at a specific
voltage.

* MCUs have a core that loads and runs instructions into/from RAM.

* MCUs have components used as inputs and outputs, to interact with
the outside world (1/O, GPIO)

* |/O can be digital or analog.

* The components that make up 1/O include transistors, resistors,

analog-to-digital converters (DACs), and digital-to-analog converters
(ADCS%.

Inputs: Digital Vs Analog

* Analog inputs read a variable voltage from [some minimum] to [some

maximum] and use an ADC to convert it into a number within a given
range.

* Digital inputs read a fixed voltage. If it’s [below some minimum], the
input reads as “LOW”, and if it’s [above some minimum] the input
reads “HIGH”

Outputs: Digital vs Analog

* Digital outputs are like buttons in a way — you turn them “on” to
provide power, and turn them “off” to disconnect.

* Analog outputs create a variable voltage through a digital-to-analog
converter (DAC).

Digital Inputs: Buttons

Button Basics

* A button (switch) is a component that something (usually a person)
interacts with to complete a circuit.

* Momentary switches complete the circuit while the button is pressed,
and break it when it is not.

* Other switches (slide, toggle, etc). Complete the circuit when put into
the “on” position, and it stays complete until the switch is put into the
“off” position.

Button Wiring

 Buttons can be wired to provide power (button is connected to a
positive voltage), or to drain power (button is connected to ground).

* The easiest (and arguably safest) way to wire buttons to a MCU is in
the “draining” style.

* The difference is that when wired this way, the button will read
“LOW” when its actuated, which can be counter-intuitive, since this
maps to False in Python.

Pull-up/Pull-down

* Inputs, by default "float” — their voltage is looking for somewhere to
go, so the readings will be all over the place.

* We encourage the voltage to go where we want (ground, main
power) using a resistor.

* The resistors are referred to as pull-down and pull-up depending on
how the input is wired.

* You can add your own resistors, however most MCUs provide built-in
resistors for each input you can actuate in software.

In Our Demo Circuits: Buttons

* The buttons are all wired to ground, and use the built-in pull-up
resistors.
* The built-in buttons on the CircuitPlayground Express are wired

differently to make the inputs more intuitive for new programmers,
and are configured to use the pull-down resistors.

Digital Outputs: LEDs

LED Basics

* LED = Light Emitting Diode.
* Diodes only let electricity move in one direction.
* LEDs emit photons as electricity moves through them.

* Different wavelengths of light are produced by different chemicals
and elements in the diode (it tends to be a fairly narrow band).

* Pure white light is produced in two ways:
* Combining Red, Green and Blue LED light.
e Coating ultra-violet LEDs in phosphorescent chemicals.

‘Simple” LEDs

* To prevent the LED from taking all the power it can and burning out,
all simple LEDs have resistors wired to them.

* Simple LEDs are just on or off, so they are connected to digital
outputs.

* To dim a simple LED, a technique known as pulse-width-modulation
(PWM) is used.

RGB LEDs

* RGB stands for Red, Green, and Blue — there are actually three LEDs in
one package.

* You can create nearly any color of light in the visible spectrum by
changing the brightness of each LED component.

* All on = White light

* The RGB LEDs on our boards are special —they contain a controller
chip so they can be chained and individually controlled through one
or two |0 pins. They also handle PWM internally so we don’t have to.

RGB LEDs: NeoPixels Vs DotStars

» Adafruit sells two primary kinds of “advanced” RGB LEDs, and they
have their own names for each: NeoPixels and DotStars.

* NeoPixels are usually bigger, can be brighter, and come in RGBW
styles that include a “true” white LED along with the red, green, and
blue.

* DotStars connect via generic SPI (two pins), NeoPixels use a single pin
and a proprietary protocol.

* NeoPixels have very specific timing requirements.
* DotStars can be more easily adopted in projects.

In Our Demo Circuits: LEDs

e All of our boards have two built-in LEDs that we’ll use in our demos.

* Each has a standard red LED on pin 13.

e Each has at least one RGB LED:

* The pin(s) vary from board to board.
e DotStars on some boards.

* NeoPixels on others.
* The CircuitPlayground Express has 10!

Analog Input: Resistive Sensors

Resistive Sensors: Basics

* Some metals and chemicals change their electrical resistance when
they interact with other kinds of energy.

* Examples include thermistors (heat), photocells (light), and FSRs
(force-sensitive resistors).

* You can use the fundamental circuit called a voltage divider to read
the resistance with an analog input.

Voltage Dividers In Brief

* Voltage dividers use two resistors to reduce a voltage.

* Normally, they are fixed — for example, you can use two 10k resistors
to reduce a 5 volt power source to ~2.5 volts.

* The amount of change depends on the values of the resistors and the
input voltage, but there is a known equation to accurately calculate
the expected voltage for two given resistors.

* You connect one resistor to ground, the other to positive voltage, and
“tap” into the space between them to get your reduced voltage.

In Our Demo Circuilts: Resistive Sensors

* We've wired up two common resistive sensors: a thermistor and a
photocell. Both are wired along with a 10K ohm resistor.

* The CircuitPlayground Express has similar sensors built in.

The Demo Circuits

be
LA

Wc TV, AW .

/O In Code

Digital I/0 In Code

* We use the built-in digitalio module.

* Here is the simplest possible code that will test our buttons:
+ Test for Gircuitp) I |
« lest for other boards.

* Here is the simplest possible code that will test our red LED:
« Testforall boards,

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

RGB LEDs In Code

e We'll need to download and install the adafruit libraries for whichever
kind of RGB LED we have on our board.

e Dotstar: adafruit dotstar

* Neopixel: neopixel

* Here’s the minimal example code:
* NeoPixels
* Dotofars

https://circuitpython.readthedocs.io/projects/dotstar/en/latest/
https://circuitpython.readthedocs.io/projects/neopixel/en/latest/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

Analog I/O In Code

* We use the built-in analogio module for the photocell

* We download and install the adafruit_thermistor library for the
thermistor.

* Here is the basic code for working with a thermistor and photocell:
+ Eor the Circuitp] £ |
* Eor other boards,

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

Side Quest: GEMMA's Lack Of Inputs

* The GEMMA absolutely tiny, and that’s one of the great things about
it.

* However, because of this, it has a severely limited number of pins
available.

* If you want to use a GEMMA with the combined digital buttons and
the analog sensors, you’ll have to use an old trick that takes
advantage of voltage dividers to "multiplex” many digital buttons
onto a single analog input.

* TODO: retake pics with proper wiring of thermistor and photocell.

-

»
-

-

-~ .

.d_‘

LT

L B B)
AL L B O

EEEEE e
L
- s e -

L B

Multiplexed Buttons: GEMMA

* Example code showing the buttons working.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Programming Philosophies

Abstraction

The Problem

* Each board provides different peripherals and GPIO.

* We want the same code to work on multiple dev boards.
* | wanted to keep my code samples as concise as possible.

The Solution

Figure out what’s common, and build an application programming
interface (API) to hide, or abstract the differences.

What’s Common

* Red LED (always on pin 13)

* RGB LED
* Button A

* Button B
* Thermistor

* Photocell

What's Different

* RGB LED could be a DotStar, could be a NeoPixel. They will required
different helper libraries and could use different pins.

* The pins used for each button could be different

* |If using the "multiplex” input-conservation scheme (GEMMA), the buttons
are read as analog signals and compared to an expected change in voltage.

 CPX has buttons wired with pull-up resistors, other boards use pull-down —
so whether a button is pressed or not will be different from board to board.

* The thermistor and photocell could be of different types. In fact, the exact
type of both is slightly different on the CPX.

Abstraction Defined

* Abstraction is used to provide a common API to dissimilar code.

* You expect the same objects, the same methods, the same functions.
* But the implementation can vary wildly behind the abstraction.

process 1

data 1

abstraction

interface

contract

setup.py

* A simple python module
* Defines our agreed upon API.

check()

button_a

| neopixels |<7

rgb

)

interface

led

button b

I__buttons |<—

setup.py

.l

| dotstar | | buttons \

contract

Looking At The Abstraction

* setup.py for CircuitPlayground Express

* setup.py for GEMMA MO
* setup.py for ItsyBitsy MO Express

* setup.py for Trinket MO

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
11:%20setup.py%20for%20the%20Itsy%20Bitsy%20M0%20Express
https://jjmojojjmojo.github.io/circuitpython_code_samples/

Using The Abstraction

* Example code that turns on the red LED when button A is pressed,
and lights the RGB LED white when button B is pressed.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Basics Of State

What Is State?

e State is the status of a thing, a collection of properties.

e State describes what something looks like at a given moment in time.
e State can transition. It changes.

e State can be the properties of your entire project, or just one part of
It.

Phases (States) Of Water

and some transitions

Steam

The Scoreboard Analogy

The Scoreboard

* Represents global state.

* Changes over time.
* Changes when things happen in the game.

ball = 2
STRIKE | out = 1

strike = 1
guest_score = 2
inning = 5

home_score = 10

State Can Be Stored As Any Mutable Object

* Simple Variables
* Lists

* Dictionaries

* Strings

* Bitfields

* Any combination

Mutable Vs Immutable

Mutable objects can be changed.

Immutable objects cannot.

Scoreboard Implemented

* Simple variables
+ List
* Dictionary

e Combination

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

Another (Better) Way: Classes

Classes

* Classes arrange data into a given structure. They model data.

* Classes are a “Blueprint” for making new objects that contain similar
data.

* Classes are used to create instances — objects that contain a copy of
the data structure.

* Classes can contain methods, or functions that operate on instances
or classes.

Instances Vs Classes

* Classes are blueprints used to make instances and hold separate
class-specific data.

* Instances are copies of the class and hold their own data.

Class Vs Instance Data

* Class data exists once.
* [nstance data exists many many times (0 to o= times).

Contrived Example

* A simple class, making instances, methods explored, instance data vs
class data.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

The Scoreboard As A Class

* Here, we've implemented a (somewhat contrived) model of an

American baseball scoreboard.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

What's Great About Classes

* Classes encapsulate data in an intuitive way.

* Classes reduce the amount of code you have to write through the use
of polymorphism (more on that shortly)

* Classes have some really cool features that are hard to code
otherwise, for example, you can make methods that act like
properties.

* Classes in Python have so-called “magic methods” so it’s easy to make
them work like built-in types.

Why not use classes?

* Classes can be more difficult to debug.

* Classes don’t always use less code, sometimes they force you to write
more.

* The biggest cases against them, however, is because this is
CircuitPython and every line of code matters:
e every single line of code has to fit within available RAM.

e we're limited in terms of storage space for code.

* Classes generally take more lines of code to write and use more RAM
than built-in datatypes.

Button State

Momentary Buttons And State

e Buttons have inherent state — they are "on” or “off”.

* We can use our state modeling concepts to track button state.

* We can extend the basic state tracking to do cool things like detect
events.

* But most critically, state is key to fighting the dreaded button bounce.

Button Bounce Explained

* Buttons are not perfect.

* People are not perfect.

* MCUs are not perfect either.
* Recall there is a range in play for detecting whether a button is on or off.

* Electricity wants to flow, so it will flow.

* In a main loop, we’re checking button state millions of times per
second.

* These facts conspire to give us “noisy” signals from buttons — this is
called “bounce”.

10

VOLTS

33

not pressed pressed not pressed

VOLTS

10

33

not pressed

pressed

TIME

L

not pressed

De-bouncing: A Sampling Problem

* The issue is, at its heart, an issue of sampling.

* Every loop, we're sampling the value of the button, and taking action.

* Electricity moves near the speed of light, our code runs millions of
times per second.

* We are getting as close to real-time status as possible, this is why we
get the noise in our signal.

* To “smooth out” the data, we just need to reduce the sample
frequency.

How Might We Reduce Sample Frequency?

* We can slow down the button (use an R/C circuit)

* We can slow down the processor.
* \WWe can check less often.

Why Not An R/C Circuit

* R/C circuits use a “network” of resistors and a capacitor to store up a
charge over time, and then discharge it all at once.

* [t requires more components, so it’s more expensive and (more
importantly for hobbyists) it’s more error-prone.

* [t’s out of the scope of this talk (it’s worthy of an entire talk on its
own, R/C circuits are one of the most versatile circuits in electronics).

* |'ve never gotten it to work. &

The Worst Best Way: Slowing Down The MCU

* The easiest way to slow down the processor is to block

* Blocking means tying up the processor so it can’t execute any other
statements.

* In Python, the typical way to do this is with time.sleep()
* We've been doing this in our testing code.

Why Not Block?

* When the processor is blocked, nothing can happen — no inputs can
be read, no outputs altered, no variables can be manipulated.

* We become tied to a single fixed frequency.

* Blocking is perfectly acceptable for simple projects.
* However, as things get more complex, blocking becomes a problem.

State To The Rescue!

* \We can use state to track the passage of time.

* We start by storing the current time in a state variable.
* Every loop, we check to see how much time has passed.

* |f enough time has passed to properly reduce our sample frequency,
we take action.

Simple State To Reduce Sample Frequency

* Example code

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Using A Class To Do The Same Thing

* Example code

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Three-Pass State Management

Consider the following example code

* Example of using state to control the color and status of the RGB LED.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

side effects

check real life

button pressed
update state more than 0.2 seconds

update real life turn on LED

reconcile state

state actions

Phases Explained

 Default State
The initial state when the board boots up

* Check Real Life
Read the physical state of buttons, sensors, etc.

* Reconsider State
Look at the state as a whole, and change the state based on what you see.

* Reconcile State
Interact with the physical world, turn on the LED, take other action.

Why?

 Keeping state and the physical sensors/LEDs apart is a fundamental
separation of concerns.

* Don’t think of each line of code as executing in sequence — things are
happening so fast that the lines are effectively interleaved.

 Sensors and LED libraries can necessarily block — we want to get out
of the way quickly and let them do their thing.

* This way of looking at things opens the door to some really cool stuff,
in particular, event detection.

Event Detection

What is an event?

* An event is a moment in time that matters to your application.

* Most of the time, events happen when state transitions from one
value to another.

e But it can also be arbitrary - for example, when our ‘debounce’ time
has elapsed, that is an event.

* Events can also happen because of other events, or because state
changes in a certain way — for example, if you hold a button down for
5 seconds. That’s the debounce event, then “the button was pressed”

event, followed by “five seconds has elapsed”.

Button Events

Button Events

* Buttons have several possible events as their state changes when
people interact with it.

* Lets start with the two primary ones: press and release
* These primary events can be defined using some simple logic.

Press Event

* The debounce time has elapsed.
* The state of the button was False, and the button is now reading True.

Release Event

* The debounce time has elapsed.
* The state of the button was True, and the button is reading False

’Oglc —# check time |

X @ decision point

?
hgs i; beenoz seponds? /

is button pin HIGH? is previous state True?

is previous state False?

El s I

events

Button Events In Code: Basics

* Example of basic button event detection

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Button Events In Code: A Simple Class

* Example of using simple fixed classes to do button events

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Flexible Event Detection: Polymorphism

e Our previous example was fixed, all of the code is contained within
the two very similar classes.

* The event detection and debounce code will be the same regardless
of the use case of our class.

* \WWe can factor the common code into a base class and use inheritance
to re-use that code in new classes.

* We can write new code in the derived, or child classes to handle the
events in different ways.

A Contrived Example

* Example of how class inheritance works.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Button Event Detection: Polymorphic

* Example of a base class for button press and release detection, and
classes that use the base class to do special things with the events.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Analog Event Detection

* Detecting events that happen with our analog sensors is similar to
now we detect events with buttons.

* However, we have a wide range of values instead of just True/False.

* Analog sensors are also much more fuzzy than their digital cohorts.

* This is especially true on our chosen platform: the M0/M4 processors
have very sensitive ADCs, and produce values ranging from 0-65535.

Analog Events: Considerations

* Because of the fuzziness, we can’t rely on an exact amount.

* We'll need to use some math, and some special sampling techniques
to get a good reading.

* We're also going to want to deal with thresholds, as opposed to
absolute values.

* Thrashing, or quickly changing from one state to the next is very
possible and we’ll need to protect against it.

Reliable Analog Sensor Reading

» Before we can detect events, we’ll need to first do some sampling.

* This is very similar to how we debounced buttons earlier, except that
we’re going to compare values and check periodically.

* The goal is to get a reading that is accurate over a short period of
time.

Example: Photocell Reading

* Example of noisy photocell code.
* Example of sampling the photocell and smoothing the value out.

https://jjmojojjmojo.github.io/circuitpython_code_samples/
https://jjmojojjmojo.github.io/circuitpython_code_samples/

Basic Analog Events: Low/Medium/High

* Since our examples are kind of contrived, we need to come up with
some events, that are also kind of contrived.

* Let’s trigger three events:

* ‘low’, when the sensor reads below a certain amount
* ‘high’, when the sensor reads above a certain amount
* ‘medium’, when the sensor is in between “high” and “low”

Example: Temperature Events

* Example of the temperature sensor triggering the low/high/medium

events.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

A New Event: Change

e Our last example printed to the console every time the temperature
sensor was read.

* This means the same “medium” event code will run over and over as
long as the temperature sensor is reading a “medium” value.

* There are times when we would want the code to run once, when the
temperature transitions from one range to the next.

* This means we have a new fourth event: ‘change’.

Example: Temperature Events And Change

* Example code showing the change event along side the other
temperature range events.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Polymorphism Can Help

* If we were to implement the same code for the photocell, most of it
would look very similar.

* Only the values themselves, and what constitutes “high”, “medium”
and “low” would change.

* \We can use polymorphism to easily create a base class containing the
common code.

* Then we can create projects using all sorts of similar sensors.
* We can also use the “change” event for unexpected use cases.

Example: A Generic Analog State Base Class

* Example of implementing code using a base class.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Implementation: Color Changing

* Example showing the minimal implementations showed in the last

example being used to change the colors of the RGB LED depending
on the analog range.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

't's All Great Except The Boilerplate

* The downside of our class-based event dispatchers is that they

require extra classes to be written every time you want to add new
functionality.

* This is often referred to as boilerplate code.

* Boilerplate is fine in simple cases, but as things get more compley, it
can get tedious.

* As mentioned earlier, we also have to be conscious about memory
and storage usage — more classes means more lines of code.

Avoiding Boilerplate: Instance Configuration

* The simplest way to avoid this class inheritance stuff is to take
advantage of the constructor’s purpose as the “setup” routine for
every new instance of a class.

* Up until now, we’ve only used constructors for setting up our default
values.

* Constructors can accept arguments like any other function or
method.

* \We can pass in parameters to the constructor to configure the
instance and avoid having to write more boilerplate.

The Generic Analog Event Dispatcher Mark 2

* Example of the analog event dispatcher refactored to work with

configuration in the constructor, and implementations of the RGB LED
color changing code for the thermistor and the photocell.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Could We Go Further?

* The last example works, but it only has one function: it changes the
color of the LED.

* We have to implement, at a minimum (boilerplate!!) one method:
sample()

 Everything else is configurable in the constructor, except the actual
code that is executed when an event happens.

* [t's possible to take this a step further, and utilize a neat concept
called dependency injection.

Dependency Injection

A Brief Introduction To Dependency Injection

* Dependency Injection is a pattern by which you pass services to

methods or functions instead of creating them in the method or
function.

* [t's useful because you can rely heavily on abstraction: anything that
has the right APl will work, and how it’s implemented is of no concern
to the code using it.

Dependency Injection In Python

* In Python, mutable objects are passed by reference.

* Everything in python is an object, and only a few are immutable.

* This means we can pass objects, functions, and even instance
methods as parameters.

Dependency Injection In Action

* TODO: Example of a generic button dispatcher.
* TODO: Example of passing the state object too

* Example of our configurable generic analog event dispatcher, but fully
and utterly configurable using dependency injection.

https://jjmojojjmojo.github.io/circuitpython_code_samples/

Applications

Nightlight

* This application turns the NeoPixel or DotStar on when the light falls
below a certain threshold.

* |t’s configurable using the two buttons:

* Button A cycles the RGB LED color

e Button B cycles the intensity

* Holding Button A toggles the LED(s) on/off.
* Holding Button B toggles flashing.

* Example code

Touchmouse

* Low-impact mouse buttons using capacitive touch technology.

* 4 functions:
e Left click
* Right click
e Scroll up
 Scroll down

* The RGB LED changes color to give a visual indication of what’s
happening.

Conference Session Timer

* A visual que that tells a speaker how long they have left in a non-
distracting way.
e Changes the RGB LED:

* from white to green when the talk begins

* from green to yellow when the talk has 5 minutes left

* from yellow to red when the talk is supposed to be over.

* flashes white and red when the talk has gone over by 5 minutes.

* The A button is used to pause or start the timer. Hold for reset.

* The B button asks for more time. If you have surpassed your limit for
extra time requests, the LED briefly flashes blue.

